Acta Cryst. (2006). E62, m887–m888 doi:10.1107/S1600536806004430 Yuan et al. • [Mn(C₇H₄O₃)₂(C₄H₆N₂)₂][Mn(C₇H₄O₃)₂(CH₄O)₂] **m887**

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lu-Tong Yuan, Zuo-Xiang Wang, An-Yu Zhou, Chun-Yi Liu and Xiao-Yong Chou*

Department of Chemistry & Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: wangzx0908@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.056 wR factor = 0.128 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

metal-organic papers

Bis(2-methylimidazolium) bis(2-methylimidazole- κN)bis(salicylato- $\kappa^2 O, O'$)manganese(III) bis(methanol- κO)bis(salicylato- $\kappa^2 O, O'$)manganese(III) methanol disolvate

In the title compound, $(C_4H_7N_2)_2[Mn(C_7H_4O_3)_2(C_4H_6N_2)_2]$ [Mn(C₇H₄O₃)₂(CH₄O)₂]·2CH₄O, there are two independent Mn^{III} ions, each located on an inversion center. The two Mn^{III} ions assume a distorted octahedral geometry and the complex anions are hydrogen bonded with free methylimidazolium cations and solvent methanol molecules.

Comment

Transition-metal complexes incorporating imidazole or its derivatives have been widely studied because they occur in some biological systems (Bhirud & Srivastava, 1990; Rettig *et al.* 1999; Baca *et al.*, 2003). We report here the crystal structure of the title Mn^{III} complex of methylimidazole, (I).

Uncoordinated methylimidazolium cations and solvent methanol molecules occur in the crystal structure of (I); they are hydrogen bonded with uncoordinated carboxylate atoms O3 and O6 of the complexes (Table 2).

Experimental

Manganese(II) salicylate (0.70 g, 2.0 mmol) was dissolved in a heated methanol solution (20 ml) of 2-methylimidazole (1.76 g, 20 mmol). The color of the solution changed to brown, indicating the oxidation of Mn^{II} ion. After slow evaporation of the solvent at room temperature, single crystals of (I) were obtained.

© 2006 International Union of Crystallography All rights reserved

Received 1 November 2005 Accepted 6 February 2006

metal-organic papers

V = 1301.6 (7) Å³

 $D_x = 1.420 \text{ Mg m}^{-3}$

Cell parameters from 1089

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4-20.6^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$

T = 293 (2) K

Prism, dark brown

 $0.28 \times 0.24 \times 0.22 \text{ mm}$

 $w = 1/[\sigma^2(F_0^2) + (0.0613P)^2]$

+ 0.5222P] where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Z = 1

Crystal data

 $\begin{array}{l} (C_4H_7N_2)_2[Mn(C_7H_4O_3)_{2^-}\\ (C_4H_6N_2)_2][Mn(C_7H_4O_3)_{2^-}\\ (CH_4O)_2]\cdot 2CH_4O\\ M_r = 1112.90\\ \text{Triclinic, } P\overline{1}\\ a = 9.013 \ (3) \ \text{\AA}\\ b = 9.135 \ (3) \ \text{\AA}\\ c = 16.696 \ (5) \ \text{\AA}\\ \alpha = 75.872 \ (5)^{\circ}\\ \beta = 85.269 \ (5)^{\circ}\\ \gamma = 77.666 \ (5)^{\circ} \end{array}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer4497 independent reflections φ and ω scans $R_{int} = 0.024$ Absorption correction: multi-scan $\theta_{max} = 25.0^{\circ}$ (SADABS; Sheldrick, 2002) $h = -7 \rightarrow 10$ $T_{min} = 0.86, T_{max} = 0.88$ $k = -10 \rightarrow 10$ 6480 measured reflections $l = -19 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.128$ S = 1.084497 reflections 341 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Mn1-O1	1.863 (2)	Mn2-O4	1.865 (2)
Mn1-O2	1.964 (2)	Mn2-O5	1.912 (2)
Mn1-N1	2.260 (3)	Mn2-O7	2.296 (3)

Tal	ble	2	
-----	-----	---	--

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O3^{i}$	0.86	2.12	2.949 (5)	163
N3-H3A···O3 ⁱⁱ	0.86	2.09	2.947 (4)	177
$N4-H4A\cdots O6$	0.86	1.98	2.823 (4)	167
$O7-H7A\cdots O8^{iii}$	0.85	1.96	2.636 (4)	136
$O8 - H8B \cdot \cdot \cdot O6$	0.85	1.92	2.685 (3)	149

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 2, -z; (iii) -x + 1, -y + 1, -z + 1.

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm O})$. Methyl H atoms were placed in calculated positions, with C-H = 0.96 Å, the torsion angles refined to fit the electron density,

Figure 1

The structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (iv) -x, 2 - y, -z; (v) 1 - x, 2 - y, 1 - z]. Dashed lines indicate hydrogen bonds.

and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The work was supported by a research project of the University (No. 913–9207041142).

References

- Baca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). *Inorg. Chim. Acta*, 344, 109–116.
- Bhirud, R. G. & Srivastava, T. S. (1990). Inorg. Chim. Acta, 173, 121-125.
- Bruker (2000). *SMART* (Version 5.625), *SAINT* (Version 6.01) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Rettig, S. J., Storr, A., Summers, D. A., Thompson, R. C. & Trotter, J. (1999). Can. J. Chem. 77, 425–433.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.